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‘moment of inertia {e.g., about pitch axis), slug-ft

NOMENCLATURE

pulse frequency, pulses/sec

transfer function of ith component in control loop,
dimensionless '

2

moment of inertia about roll axis, slug-ftz

moment of inertia about yaw axis, slug-ft2

thrust impulse single corrective torque application, lb-sec
total thrust impulse over operating time, TT. lb-sec
stabilizing or destabilizing torque parameter, dimensionless
position gain, dimensionless

rate gain, sec

gain of ith component in control loop, dimensionless
moment arm, ft

modulation factor {(m = 1 - constant thrust), dimensionless
threshold modulation factor, dimensionless

steady external torque, ft-1b

stabilizing or destabilizing external torque coefficient,
ft-1b/radian

number of pulses required to reverse angular rate,
dimensionless

total number of thrust impulses in time, TT’ dimensionless
rate measurement threshold, radians/sec
Laplace operator, sec”}

time, sec

iii
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thrust pulse width, sec
minimum thrust pulse width, sec
coast time with destabilizing external torque, sec

coast time without external torque, sec

coast time with destabilizing external torque, sec

ccast time with steady external torque, sec

thrust pulse magnitude, 1b

system operating time, sec

thrust generator threshold, dimensionless .
total propellant used in time Tt’ 1b

position measurement threshold, radians

error signal, radians

vehicle Euler angle, radians

position measurement signal, radians

Laplace transformed position, radians

initial condition in 6 (beginning of coast), radians
position command signal, radians

vehicle angular rate, radians/sec

rate measurement signal, radians/sec

initial condition in 6 (beginning of coast), radians/sec
angular rate reversal magnitude, radians/sec
stabilizing or destabilizing torque parameter, sec”?
steady external torque parameter, raclian.-.l/sec2

critical value of steady torque parameter, r::ldizms/sec:2

iv



relative propellant consumption
dimensionless .

relative propellant consumption
dimensionless

relative propellant consumption
dimensionless

relative propellant consumption
dimensionless

orbit frequency, radians/sec

- destabilizing torque,
- destabilizing torque,
- stabilizing torque,

- steady torque,




I. DESCRIPTION

The single-axis attitude control system described by the diagram in
Figure ] is now considered. The position and rate measurements are con-
sidered to have independent and symmetric threshold values § and r, re-
spectively. A threshold error signal of magnitude v is necessary to obtain

an output from the torque generating device.

The authors consider in particular that the thrust which generates

control torque is pulse modulated and the modulation factor is
m = fAt

It is possible to modulate the thrust with pulse frequency f or pulse
width At, or both. Figure 2 depicts the meaning of these quantities along
with Tm the thrust pulse magnitude. The time average thrust will obviously

saturate for m = 1 but this condition will not be a point of concern in this

paper.
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Fig. 1. Attitude control system with nonlinearities.
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Fig. 2. Reaction jet thrust wave form.



II. SWITCH LINES

The following relations can be written from Figure 1 by inspection

0, |e|<6' (1a)
o ={6-8 0>5 (1b)
6+6 0<-6 (lc)
0, ,él<r (2a)
é'=¢’e-r',é>r (2b)
6+7f, 6<- ¢ (2¢c)
(0, lel(v . (3a)
m:«KD(e-v)+mo,ezv (3b)
KD (e + v) -m, €< -V (3c)

| K ot
<= @ *REG (4)

D

The equations of the lines, referred to as switch lines, in the phase
plane that separates the coasting region from regions where corrective torque
is applied may be determined by setting m ‘% m_ = 0 in Eqgs. (3b) and (3c¢).
The equations of the switch lines can best be found by constructing a table of
5.11 the combinations of signs of 6, 9, and ¢ (see Table I). A set of equations
for the 6 and 6 signals at or above threshold are obtained from Eqs. (1b),
(1c), (2b), (2c), (3b), (3c), and (4) (see column B, Table I). Another set is
obtained by letting 6 drop below threshold or (6 £ £) = 0 in the equations of

column B (see column C). The remaining possible equations are obtained by
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letting 6 drop below the threshold or (8 £+ §) = 0 in the equations of column
B (see column D). Some of the combinations of signs are not possible and
are so indicated. This happens because of the inequalities in the mother set
of equations. The segments of the lines defined by the equations in columns
B, C, and D which enclose the coast region are plotted in the phase plane

diagram of Figure 3.
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III. POWERED TRAJECTORIES

It is seen that the switch lines defined by Figure 3 and Table I separate
regions in the phase plane where the trajectories differ in character. Outside
the coast region are powered regions where the trajectories are those where
corrective torque is applied. The following trajectory descriptions apply to

the system under consideration without external torques.

Regions 1, 7, 8, and 14 contain rectilinear portions of the trajectories
where the control system operates without benefit of position feedback. Re-
gions 2, 5, 6, 9, 12, and 13 contain the second order system spiral portions
of the trajectories. Regions 3, 4, 10, and 11 contain the elliptical portions

of the trajectories where the system operates without benefit of rate feedback.

The regions of importance so far as limit cycles are concerned are the
coast region and the elliptical trajectories regions, for it can be deduced
that the steady limit cycle of the system being considered is determined by
¥ and (6 + v). The vehicle will coast at angular velocity % r until
@ = (6 + v), at which tirne corrective torque is applied without benefit of
rate feedback, giving rise to an elliptical trajectory symmetrical about the
8 axis. The corrective torque is removed when the point on the elliptical .
irajectory coincides with a point on a switch line. It should be pointed out
that the powered portion of the limit cycle trajectories is elliptical only if
the threshold modulation factor m_ = 0. If m_ # 0, the trajectories tend
to be parabolic and are perfect parabolas if m = m_ = constant. When pulse
modulation is used, the minimum angular momentum impulse applied to the

vehicle by a single thrust pulse should be much less than Ir or

T 1At . =1 A6 << It (5)
m min



in order that the foregoing comments apply. If this is not the case, the

mean drift velocity will be determined 'by

: n Tm lAtmin
8 =5 - ——— (6)

where n is the integer number of pulses required to reverse angular rate.
Since n should be an integer, it will be some value higher than the reversing

impulse or

n2T IIfAt ) (7)
m

Ideally n should be the next integer value above the value of the right side
of the above expression. An interesting thing to note is that the number of
pulses should lie between that required to insure a change of sign of 6 and

that required to change 6 from f to -f. Thus

Ir If
T Tat~ <™ <2%T71a— (8)
m min m min

and, therefore, the mean drift velocity will be less than ¥. For n large,
the torque control becomes almost continuous (small granularity), n ap-
proaches the right side of Eq. (8) and the drift velocity is approximately r.
For n = 1 and Il"/Tm !Atmin nearly equal to but less than unity, the mean
drift velocity approaches r/2. It would appear that by proper design, an
attitude control systemn using pulse modulation might have a built-in safety

margin of gas or propellant supply {(in the absence of external torque).



Figure 4 illustrates a pulse frequency modulation system response
trajectory in the phase plane where the mean drift velocity is slightly greater
than r/2. The pulse width in this case is constant. Figure 5 illustrates a
pulse modulation system response traj'ectory when the pulse width and pulse
frequency are both modulated. Position and rate thresholds are not shown

in this figure.




Fig. 4. Pulse frequency modulation system response.
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Fig. 5. Pulse frequency and width modulation system response.



IV. COAST TRAJECTORIES

In the absence of external torques, the vehicle will coast with constant
angular velocity across the coast region from switch line to switch line and
from left to right in the upper half of the phase plane and from right to left
in the lower half of the phase plane.

The characteristics of the coast trajectories when the vehicle is subject
to external torques can be determined by solving the vehicle's equation of
motion. The equation of motion of the coasting vehicle with a stabilizing or

destabilizing torque and a steady torque acting on it is

oM _
25 @ = M (9)

16 -
where 9M/36 = stabilizing or destabilizing torque coefficient (ft-lb/radian)

and Ms = steady torque (ft/lb). The coefficient 9M/88 is defined as the

moment (stabilizing or destabilizing) per unit angle 6.

Considering aerodynamic and gravitational moments acting in the pitch
plane on a circular orbital vehicle witn pitch attitude deviation 6 from the
local horizontal in the direction of motion, the torque coefficient, 3M/98,

can be expressed as

oM ’ 2
FL MG B 3wo (Ix i Iz)

where Me is the aerodynamic stability derivative with respect to 6, Iz is
the yaw moment of inertia, Ix is the roll moment of inertia, and @, is the
vehicle orbit frequency. The second term on the right of this relation is the
torque per unit angle 6 resulting from the gravity gradient as presented and

discussed by Frye and Stearns (Ref. 1). As is pointed out by Frye and

12



Stearns, Davis (Ref. 7) has shown that this term arises from a combination
of the effects of torque due to gravity gradient and centrifugal force of
orbital motion. More general relations for the gravity torques, from which
one can determine the gravitational torque derivative, are available in the
literature (Refs. 3, 4, 8, 13, 14). The aerodynamic stability derivative
may be deduced from the normal force and axial force characteristics of
the vehicle resulting from what may be considered Newtonian or free mo-
lecular flow as is discussed by Frye and Stearns (Ref. 1), and DeBra and

Stearns (Refs. 5, 6).

A steady torque with respect to body axes could arise from solar
radiation pressure or winds. In this case, the torque would be 'steady"
only during the time of year when the orbit plane of an earth satellite would
be normal to Earth-sun radius vector. The solar pressure torque would be
constant for a vehicle in a circular heliocentric orbit where one axis is kept
aligned with the velocity vector. It can also arise from gas ventage, leakage,
and from steady aerodynamic moments in a vehicle whose axis of symmetry
is not nominally aligned with the orbital velocity vector. (Refs. 1, 4, 10,
11, 12)

Equation (9) may be written as

0 =2\° 0 +p (10)
where
N2 & 3M/a8
= ==
M
N
pE (11)

13




If Eq. (10) is divided by 6

B R (12)
6 e e
Equation (12) integrates directly to
02 - 22 0% - 2 4 6 = constant (13)

If the sign of XZ is positive and pu = 0, the external torque is destabilizing
and the result is the equation of a family of hyperbolas with center at the
origin and asymptotes with slope * . These hyperbolic trajectories exist
only within the coast region of the phase plane. Figures 6 and 7 show the
two types of limit cycles which are possible assuming that higher order
effects will preclude steady limit cycles inside the ones shown. In Figure 6
the coast trajectories resemble the constant 8 condition which is obtained
with no torque. In Figure 7 the coast trajectories are such that 6 always
has a mean value other than zero and never reaches zero (unless the trajec-

tory follows the asymptotes).

If the sign of )\2 is negative and p = 0, the external torque is stabi-
lizing and we have the equation of a family of ellipses which describe the
trajectories in the coast region. Figure 8 illustrates the 10\‘vest frequency
steady limit cycle possible with stabilizing torque. Elliptical trajectories
are possible inside the one shown but it is assumed that spurious torques
and lags in a practical system will eventually open these out to the one shown.

If xz = 0 and u is positive, the equation of a family of parabolas is

obtained. These parabolas open to the right in the phase plane. Figure 9
illustrates the steady limit cycle obtained assuming that higher order effects

will open out the trajectories that are possible inside the one shown. For pu

14



smaller than that of Figure 9, the coast trajectory flattens until the apex of
the parabola coincides with the 8 = - (6 + v) switch line and further re-
duction of p causes corrective torque application on the left side of the
phase plane. '

Had the steady torque term p not heen neglected, in the destabilizing
and stabilizing external torque types of *trajectories mentioned in the fore-
going, its effeét would have been to shift the hyperbola's and ellipse's centers
along the 8 = 0 axis. Figures 1u and i1 show this effect and the resulting

limit cycle trajectory shapes.

15
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V. COAST TIME

The ratio of the time of corrective torque application to the drift or
coasting time in a practically designed system will likely be of the order of
10 percent or less. Thus the period of the limit cycle in most cases will be
r:iepende:nt: primarily upon the drift time. This time can be determined for a
system with external torques and can be compared with the drift time of a
system without external torques to obtain an estimate of relative propellant
consumption since the amount of propellant expended over a time interval of
operation of the system will be proportional to the frequency of the limit

cycle.
Equation (10) may be solved subject to the initial conditions that exist

at the beginning of the drifting portion of the limit cycle.

0 (o) =6

and (14)

"
D

6 (o) 2
Definition is given of

L et} = 8s)

Taking the Laplace transform of Eq. (10)

éo
8 +
o (s - A7) e s (87 - \7)

18



Finding the inverse Laplace transform of Eq. (15) obtains for xz positive

. 6
-ée—(g)zcosh)\t+x-:— sinhkt++[coshkt-l],k2>0 (16)
o. o L
o

and for )\2 negative

0
e o . 2
e (t) = cos N[t + sin. ]\|t + [1 - cos Nt], A\ <0 (17)
o Ngo A Oo

The coast time interval from the initial conditions to & = 0 is obtained by

setting 6 (t) = O.

A, Destabilizing External Torque, )\2 > 0 with p = 0

The coast time between corrective torque application from Eq. (16)

for the limit cycle type shown in Figure 6, where p = 0, is

2 -1 {1
tDl by tanh (R) (18)
where
-éo

Using the identity

-1 _ 1 1 + x
tanh x-iln(l )

19



Eq. (18) can be expressed as

1 K+1

which corresponds to the condition K > 1.

The coast time between corrective torque application for the limit

cycle shown in Figure 7 is determined by differentiating Eq. (16) and setting

@

(ad

"

(o d
N' o
™

\—/

N

o

obtaining

In (%Lg) (21)

o
b

which corresponds to the condition 0 < K < 1.

Comparing Eqs. (20) and (21) it can be seen that in general

, K> 0 (22)

B. Stabilizing External Torque, )\Z < 0 With p = 0

The coast time between the switch lines for )\2 < 0 and p = 0 is
obtained from Eq. (17)

ts = -I% tan-l (Il{-) (23)

20



C. Steady External Torque, p # 0 with \2: 0

The coast time for the type of trajectory shown in Figure 9 can be
found by differentiating Eq. (17) and setting A\ = 0 and & = 0. This results

in the drift time between corrective torque applications
t = . =2 (24)

When p is small enough that corrective torque is applied on both sides
of the phase plane diagram, Eq. (17) is again differentiated, setting \ = 0

and setting

e = ,/éi - 4p8_ (25)

to find the drift time. Equation (25) is obtainad from Eq. (13) with 6 = -90
where the constant is evaluated using the initial conditions 6 = 90 and
8 = -éo. The result is obtained
. 0,
t = - — [1 - 26
n m (26)

for the coast time between corrective torque applications. The value of u
for which the apex of the parabolas coincides with 6 = - 90 is obtained
from Eq. (25) with 6 = 0. It is what may be termed the critical value of

the steady torque parameter

(27)

ko
(¢]
"
©-
:qo w
(o}
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VI. RELATIVE PROPELLANT CONSUMPTION

If it is assumed that corrective torque application time is negligible
compared to coast time, the propellant consumption will be proportional to
corrective torque application frequency or inversely proportional to coast
time for a given operating time. The relative propellant consumption ¢ is
defined as (propellant consumption with external torque) + (propellant con-

sumption without external torque).

A. Destabilizing External Torque

For the case of destabilizing external torque

t
D]
A A=0

From Eq. (21), ' using L'Hospital's rule

29
. 2 o A
t] = lm t_ = S = - —2 2¢ (29)
Diyx=0 -0 D K& 6 °
o
which could have been deduced directly.
Using Eqs. (22) and (29) in Eq. (28)
2 K + 1] ]!

It is of interest to see how propellant consumption varies with the

destabilizing torque coefficient. Accordingly ¢ is plotted vs. l/Kz in

22



Figure 12. This figure shows a theoretical relative propellant consumption
of zero for K = 1. Praccically, less ifnpulse than for the case of a system

without torque might be expected if

o<—17<1.44
K

or (31)
0.83 < K< o

However, this presumes that the point (éo, 90) at which corrective
torque is applied, is the same for both conditions (i.e., with torque and

with no torque). This behavior is seen in the dashed curve of Figure 13.

The case is examined where there is a given value of torque and
hence \. It should be possible to vary K by virtue of the possibility of
adjusting éo/eo. The question may reasonably be asked: What effect does
the choice of switching point (eo, Go) have on propellant consumption? Tc":
answer this it mdy be noticed from Figure 12 that K = 0. 83 gives the same
propellant consumption as the case of zero torque (it may be considered

unity consumption). The ratio is formed

tD}, llan 1|
A 6,/6, = 0.83\ ) x K- Tl . o83 32)
¢p = 0ol = lln|K+1'
6,/8, = K X -1

23
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or

! 1

?p = 24—k 1 (33)
g
This relation is plotted as curve 1 of Figure 13 and is
propellant consumption when switck~d -t éo/eo = K\
propellant consumption when switched at ()o/ 90 = 0.83\
propellant consumption when switched at 8 /6 = K\

propellant consumption when switched at éo/eo with A\ = 0

From the solid curve of Figure 13, one sees that for a given value of

torque
_ 1
0.83—1—-2<K<l.2 (35)

in order that consumption be less than that obtained with zero torque. It is

apparent from Eq. “(28) that
' ' 1
¢p (K) = ¢p (K) (36)

Something might be gained from this observation; i. e., if the torque coeffi-
cient is predictable within a + percent expected error, it would be better to
set K > 1 because the penalty for error is not so great in this direction as
for K < 1.

25




In regard to the means for adjusting éoleo, one observes from Fig-

ure 3 that éo = ¥ and Go = 6§ + v and, therefore

- 7 (37)

o°| o®

As a result, the switching point is easily adjusted if these quantities are at

one's disposal in a practical system.

B. Stabilizing External Torque

The relative propellant consumption for the case where XZ is negative

and p = O is obtained using Eq. (23)
t

1
¢ 2 - (38)
8 te K tan"I "ﬁ’

Equation (38) is plotted in Figure 12 which shows that the relative propellant

nw

consumption increases monotonically and the consumption with a negative
stabilizing external torque coefficient will always be greater than the con-

sumption without torque.

C. Steady Torque

The relative propellant consumption for the case where XZ = 0 and

Be is obtained using Eq. (24)

29

. o
t (- po
-2._9o _Yo

¢P' Tt 2 Y B> llc (39)‘
(2 é e

.2 o

m

26



To obtain the relative propellant consumption for kz = 0 and p positive
and less than Koo it is assumed that for the corrective torque on the left side

of the phase plane, one consumes only

as much fuel in reversing 6 as on the right side. The ratio

4p9°

o

will then be the relative fuel consumption of this cycle due to the unsymmetric

limit cycle. Then the product of this quantity and the ratio of the coast time

29
o}

6

" 40"
i

should give a reasonable approximation to the relative fuel consumption. Thus

4.0
1+ [1 - o
-z
peo 90 .
¢, = V) ’0<P'<|"c (40)
B 4u0 ,
° 1 - 1-—-2—°
8
[

27



Equations (39) and (40) are plotted in Figure 14, where it is shown that the
fuel consumption of the system can be as small as 1/4 the fuel consumption

without external torques.

28
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VII. TOTAL PROPELLANT CONSUMPTION

WITHOUT EXTERNAL TORQUE

The following assumptions are made:

1. Steady limit cycle only contributes to propellant consumption.

2. No‘external torques.

3. Corrective torque application time negligible compared to coast
time.

4. Reaction jets only are used.

One then has the set of equations for a single axis

)
t = —2
° 6
o}
T, = Nt_
&T=No9<

AO = 26
(o}
_dr

Wo =
sp

30



Simple substitutions yield

(41)

31




VIII. HIGHER ORDER EFFECTS

In practical systems the dynamics of the hardware used in the control
system'lead to higher than second order system response. Figure 15 rep-

resents a typical single axis system with the transfer function

KZ
K4K3 R—3— s + l) G2 (s) G3 (s)

KKKRle +1) G, (s) G G, (
1+ 18453 T) 2 \ K] ° 1 (8) G, (5) Gy (s)

0 _
o .
C

Figure 16 presents a comparison between a second order system,
i.e., G1 (8) G2 (8) G3 (s) equals one, and a higher order system. The
phase plane is the result of an analeg computer study of a system without a
threshold in the position channel to the valve. The dynamiés of the control
system hardware cause the time of switching to lag that of an ideal second-
order system thereby increasing limit cycle rates and, subsequently, fuel

consumption.
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IX. DESIGN CONSIDERATIONS

A, Minimum Pulse Width

The number of pulses to reverse the direction of motion when corrective
torque is applied needs to be one or more. Some advantage accrues from a
single thrust pulse as was discussed in the section on Powered Trajectories.
If N = 1 in Eq. (8) then

It < T__ LAt . < 2l (42)
m min

A pulse width can be found which will cause 8 to change its sign and
also which will provide some margin of safety such that two corrective pulses
will not occur. Choosing a value of torque impulse midway in the range

{Eq. {42)] one could use

1.5 If
At in © T 1 (43)

The minimum or threshold pulse width should be at least this small.

B. Maximum and Minimum Pulse .Frequency

If pulse frequency modulation alone is used it is noted that

- 1
fmax T At_ . (44)
min
when m = 1 (or continuous thrust). The minimum pulse frequency should

be such that l/fmin or the time between pulses at threshold conditions is

long compared with the instrument (and possible shaping network) response
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times. This is desirable to prevent application of more corrective thrust
impulses than is necessary because of slow information processing by
control system components. If both of the desired conditions (i.e., {

max
and fm‘in) cannot be met because of frequency range limitations of pulse

frequency generating devices, it may be desirable to use a combined pulse
frequency and pulse width modulation method in order to extend the modu-

lation factor range of the pulse producing equipment.

C. Adjustments for External Torque

The minimum pulse width should likely be reduced when the vehicle
has external torque acting on it. This can be deduced from curve 1 of
Figure 13; i.e., itis not desirable to allow the single torque impulse to
govern A® (unless it corresponds to K = 1). It is probably better from a
design point of view to require something of the order of 10 pulses to achieve
ag = 2¢ in order that the adjustment factor /6 + v predominate in the

determination of relative propellant consumption.

Then again, if £ is not accurately known or is time varying in some
random way, it may be better to choose Atmin to correspond to the optimum
value of K = 1, providing that minimum pulse width can be accurately set

and held time invariant better than r.
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X. CONCLUSIONS

In the threshold region or in the vicinity of the origin in the phase
plane, trajectories are or can be piecewise linear, hyperbolic,

parabolic, and elliptic.

Minimum pulse size can affect the mean drift rate advantageously or

disadvantageously.

There may be an advantage in modulating both pulse width and pulse
frequency in order to reduce the single pulse impulse below I#/f so

that it is not the controlling factor in the resulting mean drift rate.

With destabilizing torque, the vehicle may drift (hyperbolic trajectories)
from positive to negative attitudes or the limit cycle may be such as to

yield only positive or negative values of attitude.

Propellant consumption with destabilizing torque is less than propellant

consumption without external torque for values of

oM éo :

(o]

Propellant consumption with destabilizing torque is less than propellant

consumption without external torque for values of

9.O
<§—<l.2
(o]

Q|
2t
gtk

0. 83
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10,

11.

12.

13.

if 60/90 for-the case of no external torque is

|QJ

0.83 ——

Propellant consumption with stabilizing torque will be greater than
propellant consumption without external torque for a steady powered

limit cycle with amplitude determined by the threshold magnitudes.

Propellant consumption with steady torque is less than propellant

consumption without external torque for

Higher order effects or additional lags in a single axis attitude control
system cause propellant consumption to be greater than a simple

second order system.

Total propellant consumption due to limit cycles in the system without
torque is proportional to the square of the rate measurement threshold
and inversely proportional to the position measurement threshold plus

valve threshold.

Minimum pulse width should be made compatible with the rate meas-

urement threshold.

Minimum pulse frequency should be low compared to sensor cutoff

frequencies.

Something of the order of 10 pulses should be designed for in the time
duration of corrective torque application. This should enable the dead
zone settings of ¥, 6§, and v to independently determine the character

of the limit cycles.
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